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Abstract

The information criterion of minimum message length (MML) provides a powerful statistical frame-

work for inductive reasoning from observed data. We apply MML to the problem of protein se-

quence comparison using finite state models with Dirichlet distributions. The resulting framework

allows us to supersede the ad hoc cost functions commonly used in the field, by systematically

addressing the problem of arbitrariness in alignment parameters, and the disconnect between sub-

stitution scores and gap costs. Furthermore, our framework enables the generation of marginal

probability landscapes over all possible alignment hypotheses, with potential to facilitate the users

to simultaneously rationalize and assess competing alignment relationships between protein

sequences, beyond simply reporting a single (best) alignment. We demonstrate the performance

of our program on benchmarks containing distantly related protein sequences.

Availability and implementation: The open-source program supporting this work is available from:

http://lcb.infotech.monash.edu.au/seqmmligner.

Contact: arun.konagurthu@monash.edu or lloyd.allison@monash.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying the evolutionarily retained similarities between macro-

molecular sequences remains an indispensable first step of many bio-

logical studies (Lesk, 2017). Comparison of sequences are carried

out using the computational technique of alignment. An alignment

is used as a surrogate for how two (or more) sequences are evolu-

tionarily related and provides a quantitative measure of their

similarity (Allison et al., 1992, 1999; Barton and Sternberg, 1987;

Lesk, 2017).

Alignment techniques commonly depend on choosing a model

for relating two sequences with stated parameters to score matched

and penalize unmatched (gap) regions in any alignment. However,

in practice, it is left for the users to fine-tune these parameters in

their quest for meaningful sequence relationships. This parameter

tuning remains a ‘black art based on trial and error’ (Do et al.,

2005), and several studies have underscored major problems with

parameter tuning and demonstrated the conflicting effects this has

on resulting alignments (Do et al., 2006; Löytynoja and Goldman,

2008; Rivas and Eddy, 2015; Vingron and Waterman, 1994). These

limitations were best summarized by Löytynoja and Goldman

(2008) in their observation that ‘alignment is still a highly error-

prone step in comparative sequence analysis’.

The problem becomes more pronounced when comparing

amino acid sequences of proteins, which additionally rely on

substitution matrices. A protein sequence alignment gives a

one-to-one correspondence between amino acids symbols, and

substitution scores are used to quantify these correspondences. A

substitution matrix over the standard amino acid alphabet is para-

meterized on a distance (or alternatively a similarity) parameter

between sequences, and conveys the mutability of one amino acid

changing into another. PAM (Dayhoff et al., 1978) and BLOSUM

(Henikoff and Henikoff, 1992) are widely used series of substitu-

tion matrices.

Yet, in the use of these substitution matrices, there remains a se-

vere disconnect between the substitution scores (used to score the

matched amino acid correspondences) and gap parameters (used to
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penalize the unmatched regions of alignments). Previous studies

have shown that, different protein sequence alignment programs

with varying choices of substitution and gap parameters convey rad-

ically different alignments (Barton and Sternberg, 1987; Blake and

Cohen, 2001; Fitch and Smith, 1983; Löytynoja and Goldman,

2008; Vingron and Waterman, 1994). Further, the confidence of

reported relationship in an alignment plummets when comparing

protein sequences from the twilight zone [by common consensus

defined as sequences sharing less than 35% sequence identity

(Doolittle, 1986)]. Do et al. (2006) observed that the correctness of

a reported sequence alignment is highly questionable when it is

below a 25% sequence identity.

Beyond the problem with tuning alignment parameters, another

major shortcoming is that most current programs report a single

alignment. Many studies have demonstrated that optimizing an ob-

jective function under a specified model of sequence relatedness

does not necessarily imply an optimization in homology (Fitch and

Smith, 1983; Durbin et al., 1998; Levy Karin et al., 2019; Redelings

and Suchard, 2005; Rosenberg, 2009) (see Supplementary notes for

a more detailed discussion).

Aforementioned deficiencies provide a motivation for the work

presented here. Specifically for comparing protein sequences, we at-

tempt to rectify: (i) the problem of arbitrariness of alignment param-

eters, (ii) the disconnect between substitution scores and gap

parameters, and (iii) the lack of a rigorous statistical framework

where all competing alignments can be simultaneously rationalized

and assessed, beyond reporting just a single (best) alignment.

Our work uses the statistical inductive inference method of min-

imum message length (MML) encoding (Allison, 2018; Wallace,

2005; Wallace and Boulton, 1968) to compare the relatedness of

protein sequences in information-theoretic terms, measurable in

bits. In this framework, any alignment between protein sequences is

a string generated by a three-state alignment machine with match,

insert and delete states. This allows us to compute robust prob-

ability estimates of sequence alignments.

Independently, we infer from a set of 118 384 structural align-

ments between protein domains, the parameters of Dirichlet prob-

ability distributions that allow us to link the distance parameter of

existing substitution matrices (e.g. parameter ‘n’ of PAM-n) with the

state machine (transition probability) parameters that produce the

three-state alignment strings. These parameters provide a substantial

statistical rationalization of the otherwise ad hoc use of gap penal-

ties. In statistical learning theory, the Dirichlet distribution is often

used as a prior distribution over the parameters of finite-state mod-

els. It is a conjugate prior for multistate models, which implies that

the resultant posterior is also a Dirichlet distribution (Allison,

2018).

Furthermore, building on these inferred Dirichlet priors, we de-

sign a statistical compression based alignment methodology with

automatically estimated parameters, to compute the marginal prob-

ability landscape of any given protein sequence pair (e.g. see

Fig. 1(a)). Marginal probability estimation (Trumpler and Weaver,

1953) applied to sequence alignment provides a powerful technique

to highlight the relationship between sequences, by marginalizing

over all the alignments between the sequences. Specifically, for a

pair of sequences S1...jSj : T1...jTj, any cell (i, j) in this landscape gives

the product of marginal probabilities that the prefixes S1...i : T1...j

and suffixes Siþ1...jSj : Tjþ1...jTj are related. This involves integrating

over all possible alignments passing through the cell (i, j) in any of

the three alignment states. Since these are rigorous estimates of

probabilities of relationship between sequences, the resultant land-

scape allows the user to visualize not just the most probable align-

ment, but also interactively query closely competing alignments

passing through any cell (e.g. see Fig. 1(b)).

Most importantly, the MML framework provides a natural stat-

istical significance test when assessing any alignment or comparing

one with another. This is measurable in bits of compression with re-

spect to the null model message length that gives the Shannon’s in-

formation content (Shannon, 1948) [related to the Kolmogorov

complexity (Kolmogorov, 1963)] of each of the two sequences inde-

pendently summed up.

Finally, asymptotic computational complexity to compare

sequences under this framework and generate these marginal align-

ment landscapes is OðjSjjTjÞ. Any specific competing alignment can

be probed and reported in OðjSj þ jTjÞ time after the initial

OðjSjjTjÞ effort.

We note that our work develops and significantly extends the

basic ideas of finite state models for alignment introduced by Allison

Fig. 1. (a) Marginal probability landscape to visualize the relatedness of two protein sequences over all competing alignments. (b) Most probable alignments

passing through a set of specific cells (i, j) in the sequence landscape, including the most probable over all cells (shown in black)
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et al. (1992, 1999), Powell et al. (2004) and Sumanaweera et al.

(2018). More generally, other noteworthy attempts at probabilistic

modeling of alignments, although with different aims and motiva-

tions, include: Durbin et al. (1998), Zhu et al. (1998), Do et al.

(2005, 2006) and Rivas and Eddy (2015). See supplementary

Section S4 for an overview of the literature on this topic.

2 Materials and methods

2.1 Primer on MML criterion
MML encoding is a Bayesian method for hypothesis (model) selec-

tion that is grounded in information and coding theory (Allison,

2018; Wallace, 2005; Wallace and Boulton, 1968).

For any hypothesis H on observed data D, their joint

probability is given by: PrðH;DÞ ¼ PrðHÞPrðDjHÞ ¼ PrðDÞPrðHjDÞ.
Independently, Shannon (1948) in his Mathematical Theory of

Communication quantified the information content (measurable in

bits) in any event E that occurs with a probability of Pr(E) as

IðEÞ ¼ � log 2ðPrðEÞÞ. In other words, I(E) is the shortest message

length required to communicate losslessly the information conveyed

by E. Applying Shannon’s insight, the joint probability between any

hypothesis and data can be expressed in terms of Shannon’s infor-

mation content as: IðH;DÞ ¼ IðHÞ þ IðDjHÞ ¼ IðDÞ þ IðHjDÞ. This

can be rationalized as the length of the message communicated be-

tween an imaginary transmitter-receiver pair; the transmitter’s goal

is to encode and send the data D over a chosen hypothesis H as effi-

ciently as possible, so that the receiver can decode the message and

losslessly recover D. The transmission message is in two parts: the

first deals with encoding and sending the hypothesis, taking I(H)

bits; the second deals with encoding the data given the hypothesis,

taking IðDjHÞ bits.

The difference in the message lengths, IðH1;DÞ � IðH2;DÞ, be-

tween any two hypotheses H1 and H2 explaining the same data D

gives the log-odds posterior ratio test:

IðH1;DÞ � IðH2;DÞ ¼ �log
PrðDÞPrðH1jDÞ
PrðDÞPrðH2jDÞ

� �
¼ log

PrðH2jDÞ
PrðH1jDÞ

� �
:

More importantly, implicit in this framework is a null hypothesis

(or model). The null model message involves stating D without ven-

turing a hypothesis—i.e. stating D raw, but as efficiently as pos-

sible—taking INULL (D) bits. If the best hypothesis H*, the one that

yields the shortest message length IðH�;DÞ over the space of all pos-

sible hypotheses, does not beat the null model (i.e.

IðH�;DÞ > INULLðDÞ), then that hypothesis has to be rejected.

The MML paradigm for hypothesis selection provides a direct

tradeoff between hypothesis complexity I(H) and its fit to the data

IðDjHÞ: a more complex hypothesis results in a higher value of I(H)

but may describe the data better with a lower value of IðDjHÞ, and

vice versa. Furthermore, MML ensures complete transparency in

communication. Any information that is not common knowledge or

based on preconceived notions implicit in the data has to be

included as part of the message sent by the transmitter. Otherwise

the transmission is not lossless, and the message sent will be inde-

cipherable by the receiver. No parameters can be hidden from the

communication, and the precision of statement of real-valued

parameters has to be directly dealt with as part of the MML frame-

work (Wallace, 2005; Wallace and Freeman, 1987). Note, the prac-

tical realization of MML is built on strong statistical foundations

developed over 40 years in the general statistical learning literature

outside molecular biology (Allison, 2018; Wallace, 2005; Wallace

and Freeman, 1987).

2.2 Protein sequence comparison in MML paradigm
Given two protein sequences S and T, we want to know if they are

related, and if so, how? Any alignment A between hS;Ti proposes a

specific hypothesis of their relationship. Consequently, using the

MML framework, the fitness of any alignment relationship between

sequences can be quantified over a two-part message. The first part

encodes the explanation of the relationship specified by A, while the

second part encodes the details of the amino acid symbols of S and

T under the relationship specified by A. We call this form of trans-

mission of sequences using an alignment, the alignment-model mes-

sage. This model gives the following message length terms:

IðA; hS;TiÞ ¼ IðAÞ|ffl{zffl}
First part

þ IðhS;TijAÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Second part

bits (1)

Any alignment hypothesis A over the sequences hS;Ti specifies a

string over three states, match (m), insert (i) and delete (d),

generated from a three-state machine with unknown parameters

(Fig. 2). For a given pair of sequences, these state-machine parame-

ters are to be inferred in concert with the distance parameter (also

unknown) between the two sequences. (These details together with

computation of the message length terms denoted in Equation 1 are

specified in Sections 2.3–2.4.)

Thus in this framework, the best alignment hypothesis A� is the

one that yields the shortest two-part message, IðA�; hS;TiÞ. More

importantly, in reasoning about the relationship between the

sequences, MML allows the contribution of all alignments to be

considered according to their respective probabilities. In probabilis-

tic terms, this is equivalent to computing the marginal probability

PrðhS;TiÞ that the sequences are related. More formally, since the

set of all possible alignments (say A) contains alignment hypotheses

that are pairwise disjoint from each other, by the law of total prob-

ability (Bayes, 1763), we have:

PrðhS;TiÞ ¼
X
8A2A

PrðAÞPrðhS;TijAÞ: (2)

The summation over all possible alignments as per Equation 2

gives the marginal probability of the relationship between two

sequences hS;Ti. The corresponding message length takes

ImarginalðhS;TiÞ ¼ � log 2ðPrðhS;TiÞÞ bits. Marginal probability

Fig. 2. Three-state machine for alignment string modeling
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provides a general and unbiased probability estimate of the relation-

ship compared with that of any specified alignment (see

Equation 1). It follows that ImarginalðhS;TiÞ < IðA�; hS;TiÞ.
Finally, MML framework provides a natural null hypothesis test

to verify the significance of any hypothesis (see Section 2.1). This

involves explaining S and T independently, assuming they are unre-

lated. We refer to this as the null-model message whose length is

given by:

INULLðhS;TiÞ ¼ INULLðSÞ þ INULLðTÞ bits (3)

In general, if INULLðhS;TiÞ � ImarginalðhS;TiÞ > 0, the hypothesis

that hS;Ti are related is accepted. Specifically, if

INULLðhS;TiÞ � IðA�; hS;TiÞ > 0, then A� provides the best hypoth-

esis of their relationship. Otherwise, both the marginal and optimal

hypotheses are rejected.

2.3 MML inference of Dirichlet priors on state machine

parameters as a function of sequence distance
As introduced in Section 2.2, any alignment A of hS;Ti is a string

produced by a three-state machine. Figure 2 illustrates the three-

state machine over match (m), insert (i) and delete (d)

states, with nine one-step transition probabilities. This machine

has an implicit constraint that the sum of one-step transitions out

of each state should add up to the probability of 1:P
Prð�jmÞ ¼

P
Prð�jiÞ ¼

P
Prð�jmÞ ¼ 1; 8� 2 fm;i;dg. Consistent

to the accepted practice of aligning macromolecular sequences, the

following transition symmetries are additionally enforced in this

work: PrðijmÞ ¼ PrðdjmÞ; PrðmjiÞ ¼ PrðmjdÞ; PrðdjiÞ ¼ PrðijdÞ;
PrðijiÞ ¼ PrðdjdÞ. With these symmetries, the three-state

alignment machine now has three free (unknown) parameters.

Notionally, these are: (i) PrðmjmÞ, (ii) PrðijiÞ and (iii) PrðmjiÞ. Once

these free parameters are estimated, the enforced symmetries

allow the remaining transition probabilities to be assigned as

follows: PrðijmÞ ¼ PrðdjmÞ ¼ 1�PrðmjmÞ
2 ; PrðdjiÞ ¼ PrðijdÞ ¼ 1�

PrðijiÞ� PrðmjiÞ; PrðdjdÞ ¼ PrðijiÞ; PrðmjdÞ ¼ PrðmjiÞ.
Therefore, our use of the symmetric three-state alignment ma-

chine entails estimation of the three free parameters distributed over

a 1-simplex for PrðmjmÞ, and a 2-simplex for PrðijiÞ and PrðmjiÞ.
We note that the unit ðk� 1Þ-simplex involves L1 normalized, k di-

mensional vectors (Allison, 2018). Thus, a vector of k probabilities

corresponding to mutually exclusive events can be represented as a

point in a unit (k � 1)-simplex.

To estimate the state machine parameters, especially as a func-

tion of the distance between two sequences, we undertake the fol-

lowing one-time probabilistic modeling exercise using Dirichlet

distributions over simplexes. These derived Dirichlet priors support

the parameter estimation in our MML based protein sequence com-

parison framework.

2.3.1 Preparation of datasets for inference

We randomly sampled from SCOP (ver. 2.07) (Murzin et al., 1995)

a set of 118 384 protein structural domain-pairs, containing 47 687

domain-pairs that are related at a family level and 70 697 domain

pairs related more distantly at a superfamily level. See

Supplementary Section S3 for details of the domain-pairs and the

method used for random selection. All 118 384 domain pairs are

structurally aligned using their 3D coordinate information (Collier

et al., 2017). These structural alignments are used in our modeling

exercise below.

Furthermore, these structural alignments are partitioned into

subsets based on the observed sequence-distance between their

corresponding SCOP domain-pairs. A surrogate measure of

sequence-distance was provided by Dayhoff et al. (1978) in terms of

Point Accepted Mutation (PAM) units. They derived PAM-1 transi-

tion probability matrix over the standard 20-letter amino acid al-

phabet that gives the probability of one amino acid mutating into

another in a unit PAM distance step. The PAM-1 matrix can be gen-

eralized to any PAM-n via exponentiation, PAM-n ¼ (PAM-1)n,

which gives the probability of one amino acid mutating into another

in n PAM distance steps. (Indeed other notions of sequence-

distances could be used (e.g. BLOSUM). We use PAM in this work

only for its convenience that allows us to generalize it systematically

to arbitrary distances between sequences.)

Therefore, for each structural alignment in our set of alignments,

we identify the best integer n in the range [1, 1000] that maximizes

the probability of matched amino acids in that alignment using

PAM-n, yielding 1000 subsets of alignments. These alignment sub-

sets are used to infer 1000 Dirichlet priors, one for each subset of

observed alignments as a function of their corresponding sequence-

distance.

Dirichlet distributions are conjugate priors for multistate models

over finite-state strings with any fixed k discrete states. Multistate

models define k parameters ½h1; h2; . . . hk� (of which k � 1 are free)

that lie in a (k � 1)-simplex. In our work, for each subset corre-

sponding to the sequence-distance parameter n in the range [1,

1000], we have a set of observed three-state alignment strings. Our

goal is to model these and infer Dirichlet prior parameters over the

corresponding multistate transition probability parameters. As dis-

cussed above, the three free parameters of the symmetric three-state

alignment machine (see Fig. 2) can be decomposed and modeled

using Dirichlet distributions over a unit 1-simplex (accounting

for the free parameter PrðmjmÞ), and a unit 2-simplex (accounting for

the remaining free parameters PrðijiÞ and PrðmjiÞ).
Below we summarize the MML method of inferring free parame-

ters from an observed dataset containing finite-state strings, along

with their optimal Dirichlet prior parameters.

2.3.2 Estimation of finite state transition probabilities over any

Dirichlet prior

Let Dirða!Þ be a Dirichlet distribution with model parameters a
! ¼

½a1; a2; . . . ak� (for ai > 0) that describes a random variable (data

sample) H
!
¼ ½h1; h2; . . . hk� representing a point in the unit (k � 1)-

simplex (i.e.
Pk
i¼1

hi ¼ 1). The a
!

can be reparameterized as ðj; l̂Þ to in-

tuitively show how the distribution concentrates with a concentra-

tion parameter j around its L1-normalized mean vector l̂ in the k �
1 simplex:

a
! ¼

�Xk

i¼1

ai

�
|fflfflfflfflffl{zfflfflfflfflffl}

j¼concentration

� a1Pk
i¼1 ai

;
a2Pk
i¼1 ai

; . . .
akPk
i¼1 ai

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

l̂¼mean vector

:

Dirichlet probability density function is given by:

f ðH
!
ja!Þ ¼ 1

Bða!Þ

Yk

i¼1
ðhiÞai�1

where Bða!Þ is the multivariate Beta function written in terms of

Gamma functions: Bða!Þ ¼ Pk
1CðaiÞ=CðjÞ. The likelihood over data

H with N data samples: ½H
!

1;H
!

2; . . . H
!

N� is defined as:

f ðHja!Þ ¼
YN

n¼1
f ðH
!n

ja!Þ. Thus, the negative log likelihood function

is:
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Lða!Þ ¼ �N log CðjÞ þN
Xk

i¼1

log CðaiÞ �
XN
n¼1

Xk

i¼1

ðai � 1Þ log hn
i

The determinant of the Fisher matrix, which indicates the sensi-

tivity of the expected negative log likelihood function to the changes

of a
!

is given by Allison (2018):

detðFisherða!ÞÞ ¼ Nk
Yk

i¼1

w1ðaiÞ

0
@

1
A 1� w1ðjÞ

Xk

i¼1

1

w1ðaiÞ

0
@

1
A

0
@

1
A;

where w1ðzÞ ¼ @2

@z2 logðCðzÞÞ is the Trigamma function.

The general estimation method of Wallace and Freeman (1987)

is used to derive the MML estimates of the free parameters of a mul-

tistate model with a specified Dirichlet prior Dirða!Þ:

ĥi ¼
xi þ ai � 0:5

Xþ
Pk
i¼1

ai � k
2

0
B@

1
CA (4)

where xi is the number of observations of the i-th state-transitions

(corresponding to the i-th parameter) in the multistate model, X is

the total number of state-transitions over all states and ai 2 a
!

is the

corresponding Dirichlet prior parameter (see Supplementary

Sections S1). The inference of the optimal Dirichlet parameters is

discussed below.

2.3.3 Estimation of Dirichlet parameters over finite-state strings

Let A be a set of N finite-state strings, each with k discrete states,

and H ¼ ½H
!

1;H
!

2; . . . H
!

N� be their corresponding set of N state par-

ameter vectors each lying in a (k � 1)-simplex. The MML estimate

a
!MML

of the Dirichlet parameters over the set A and H is the one

that minimizes the two-part message length, as follows:

arg min
a
!
ðIða!;H;AÞ ¼ Iða!Þ þ IðHja!Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

First part

þ IðAjH; a!Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Second part

Þ bits (5)

Iða!Þ and IðHja!Þ deal with the message length terms required to

transmit the Dirichlet and state parameters, respectively. Finally,

IðAjH; a!Þ deals with the transmission of all finite-state strings in A,

using the corresponding state parameters H and Dirichlet prior a
!

(see Supplementary Section S2).

The Dirichlet parameter estimator defined by Equation 5 is used

on the subsets of structural alignments defined over PAM-based se-

quence distances in the range n 2 ½1; 1000�, to derive 1000 Dirichlet

priors as a function of sequence-distance parameter n (see Section

3). These precomputed priors are employed to assign alignment state

machine parameters when comparing any two sequences, as dis-

cussed below.

2.4 Practical considerations for protein sequence

comparison and alignment using the MML framework
2.4.1 Estimation of null-model message length

Equation 3 in Section 2.2 involves the computation of null model

message lengths of individual amino acid sequences, S and T. This

in turn involves the statement of each amino acid symbol in these

sequences using their respective null probabilities.

The MML estimate of the null probability for any amino acid

symbol is computed over the large corpus of protein sequences

derived from the Universal Protein Resource (UniProt-Consortium

et al., 2017). Specifically, ½h1; h2; . . . h20� corresponding to the 20-

state amino acid strings are computed using Equation 4 by setting

the 20-dimensional Dirichlet parameter vector to a
! ¼ ð1; 1; . . . ; 1Þ.

This is same as using a uniform prior for the estimation of the null

probabilities. We note that the estimation of null probabilities for

amino acid sequences is one-off and independent of any particular

sequence comparison.

The individual encoding of any sequence Y ¼ ðy1y2 . . . yjYjÞ first

encodes the length jYj over a universal integer code—we use

Wallace Tree Codes (Wallace, 2005; Wallace and Patrick, 1993)—

followed by successive statements of individual amino acids in the

sequence using the null probability estimates:

INULLðYÞ ¼ IintegerðjYjÞ þ
XjYj
i¼1

INULLðyiÞ bits

Applying the above equation to S and T yields the required null-

model message length, INULLðhS;TiÞ.

2.4.2 Estimation of alignment-model message length

Equation 1 in Section 2.2 gives the length of the two-part message to

communicate any sequence pair hS;Ti over an alignment hypothesis

A. The first part encoding deals with the statement of an alignment

hypothesis A as a three-state string over the finite state machine

with m, i and d states, as depicted in Figure 2. From the Dirichlet

modeling exercise carried out in Section 2.3, for any stated PAM-n

distance between hS;Ti with n 2 ½1; 1000�, we have an associated

Dirichlet prior. In this work, we chose the mode (i.e. point of max-

imum probability density) of the nominated Dirichlet distribution to

define the nine state transition parameters. Since Dirichlet priors can

be treated as common knowledge between the transmitter and re-

ceiver, the transmitter needs only to state the parameter n. (Under a

uniform assumption of n 2 ½1; 1000�, the code length to state n is

estimated as IðnÞ ¼ log 2ð1000Þ ¼ 9:965 bits.) Once n is decoded,

the receiver gains knowledge of the precise state transition probabil-

ities used in the transmission of A.

Consequently, the first part message length can be decomposed

into its constituents as follow.

IðAÞ ¼ IðnÞ|{z}
distance

þ IintegerðjAjÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
length

þ IðAjnÞ|fflfflffl{zfflfflffl}
3�state string

bits

The second part encoding involves explaining the amino acid

symbols in hS;Ti using the alignment hypothesis A and the distance

parameter n (both communicated in the first part). Each position in

the alignment indicates one of the three possibilities: (i) an amino

acid symbol si 2 S is unmatched (delete); (ii) an amino acid sym-

bol tj 2 T is unmatched (insert); and (iii) a pair of amino acid

symbols si 2 S and tj 2 T are matched (match).

The statement of unmatched amino acid symbols in S and T are

carried out using their null probabilities as defined in Section 2.4.1.

For the matched amino acid symbols si: tj, given the knowledge of

their sequence distance n, their joint probability is computed using

PAM-n as:

Prðhsi; tjijnÞ ¼ ðPrðsiÞPrðtjjsiÞ þ PrðtjÞPrðsijtjÞÞ=2:

This joint probability estimate is a symmetric measure independ-

ent of the assumed order of the two sequences being considered.

Negative logarithm of this joint probability gives the Shannon’s in-

formation content (i.e. statement length) of communicating the

matched amino acid pair. The total length of stating hS;Ti over any

alignment A, IðhS;TijAÞ, sums up the statement lengths over all

matched and unmatched positions in A, as described above.
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2.4.3 Dynamic programming algorithm to compute the marginal

probability of sequences

Here, we propose a OðjSjjTjÞ-time and space algorithm to compute

the marginal probability of hS;Ti, as defined in Section 2.2. The ap-

proach requires storing three dynamic programming algorithm

(DPA) history matrices: Totm; Toti, and Totd. Each cell (i, j) in these

matrices stores the negative logarithm of the marginal probability

that the prefixes S1...i : T1...j are related, by summing over all align-

ments ending in a match, insert and delete state, respectively.

This can be efficiently computed using the negative LogSumExp

(LSE) function under the dynamic programming recurrences given

below, where LSE computes the logarithm of the sum of exponen-

tials of its arguments:

Totmði; jÞ ¼ �LSE
Totmði� 1; j� 1Þ � logðPrðmjmÞPrðhsi; tjijnÞÞ
Totdði� 1; j� 1Þ � logðPrðmjdÞPrðhsi; tjijnÞÞ
Totiði� 1; j� 1Þ � logðPrðmjiÞPrðhsi; tjijnÞÞ

8<
:

Totdði; jÞ ¼ �LSE
Totmði� 1; jÞ � logðPrðdjmÞPrðsiÞÞ
Totdði� 1; jÞ � logðPrðdjdÞPrðsiÞÞ
Totiði� 1; jÞ � logðPrðdjiÞPrðsiÞÞ

8<
:

Totiði; jÞ ¼ �LSE
Totmði; j� 1Þ � logðPrðijmÞPrðtjÞÞ
Totdði; j� 1Þ � logðPrðijdÞPrðtjÞÞ
Totiði; j� 1Þ � logðPrðijiÞPrðtjÞÞ

8<
:

Thus, the negative logarithm of the marginal probability that S :

T are related is given by �LSEfTotmðjSj; jTjÞ; TotdðjSj; jTjÞ;
TotiðjSj; jTjÞg, plus the constants associated with stating n, taking

logð1000Þ bits, and the sum of lengths of the two sequences,

IintegerðjSj þ jTjÞ. Furthermore, in the above set of DPA recurrences,

replacing –LSE function by min function yields the method to com-

pute the best alignment hypothesis under our MML framework.

Finally, an approach similar to the bisection method is used to

identify the corresponding optimal distance parameter n that yields

the best estimate for ImarginalðhS;TiÞ, and separately for IðA�; hS;TiÞ,
searching over the domain lo ¼ 1 � n � 1000 ¼ hi. In each iter-

ation, this approach truncates the search domain from [lo, hi] to ei-

ther loþ bðhi�loÞ
4 c; hi

h i
or lo;hi� bðhi�loÞ

4 c
h i

; by removing either the

first or the last quarter of the domain after evaluating the marginal

probability (or similarly, the best alignment hypothesis) at those two

quarter points. The value of lo upon termination is taken to be the

optimal estimate of n.

2.4.4 Marginal probability landscapes

In order to generate the marginal probability landscapes that allow

users to visualize all competing alignments simultaneously, the fol-

lowing approach is used. For a given hS;Ti, the DPA is run in the

forward direction (i.e. natural direction of the sequences). This

yields the inferred distance parameter n and the dynamic program-

ming history matrices Totm
!

;Toti
!

and Totd
!

. Using the inferred dis-

tance parameter from the forward run, the DPA is run in the

backward direction (i.e. reverse direction of the sequences), yielding

the history matrices Totm
 

;Toti
 

and Totd
 

.

A combined landscape matrix is derived by computing, for

each cell (i, j), the negative LSE function over the following nine

arguments: (i) Totm
!
ði; jÞ � logðPrðmjmÞÞ þ Totm

 
ði; jÞ, (ii) Totm

!
ði; jÞ �

logðPrðijmÞÞ þ Toti
 
ði; jÞ, (iii) Totm

!
ði; jÞ � logðPrðdjmÞÞ þ Totd

 
ði; jÞ,

(iv) Toti
!
ði; jÞ � logðPrðmjiÞÞ þ Toti

 
ði; jÞ, (v) Toti

!
ði; jÞ � logðPrðijiÞÞ

þ Toti
 
ði; jÞ, (vi) Toti

!
ði; jÞ � logðPrðdjiÞÞ þ Totd

 
ði; jÞ, (vii) Totd

!
ði; jÞ �

logðPrðmjdÞÞ þ Totm
 
ði; jÞ, (viii) Totd

!
ði; jÞ � logðPrðijdÞÞ þ Toti

 
ði; jÞ

and (ix) Totd
!
ði; jÞ � logðPrðdjdÞÞ þ Totd

 
ði; jÞ.

Any cell (i, j) in this landscape gives the product of marginal

probabilities that the prefixes S1...i : T1...j and suffixes Siþ1...jSj :

Tjþ1...jTj are related. The marginal probability landscape provides in-

sightful visualization of alignment relationships between two

sequences. It also allows users to interactively generate competing

alignments passing through any specified cell (i, j) in the landscape

(see Section 3).

3 Results and discussion

3.1 Inferred Dirichlet priors
Using the inference method described in Section 2.3, we derived

1000 Dirichlet priors to model the observed distributions of state

machine parameters, as a function of sequence distance n 2
½1;1000� measured in terms of Point Accepted Mutations (Dayhoff

et al., 1978) (see Supplementary Section S3).

Figure 3(a) shows all the 1000 distributions of the free parameter

PrðmjmÞ associated with the match state. This parameter influences

the observed lengths of the matched blocks produced by the three-

state machine. These lengths are geometrically distributed, and

the probability of seeing a matched block of length L is

ð1� PrðmjmÞÞ � PrðmjmÞL�1. The expected length of the matched

block is given by 1=ð1� PrðmjmÞÞ. Furthermore, due to the enforced

symmetry of state transitions from match state to insert or de-

lete states (see Section 2.3), we have: 1� PrðmjmÞ ¼
PrðijmÞÞ þ PrðdjmÞ. This value informs the probability of observing

a gap in any alignment produced by the state machine. Figure 3(c)

plots the expected probability of observing a gap as a function of

distance n, when PrðmjmÞ is set to the mean (red) and mode (blue)

values under the Dirichlet distributions shown in Figure 3(a). We

notice the trend that the probability of a gap increases linearly with

n in the range [1, 350], and stays relatively flat when n>350. This

linear trend agrees with the observations by Gonnet et al. (1992)

and Benner et al. (1993).

On the other hand, Figure 3(b) shows a small selection of nine

Dirichlet distributions, for specific values of n 2 f1;40; 80; 120;

160;200; 400; 600;800g, associated with the insert state parame-

ters. (By symmetry, insert and delete state parameters are

equivalent.) The heat map shows the inferred concentration (refer

Section 2.3.2) of the probability density about the mode shown as a

yellow dot (at the center of the heat map). The black dot shows the

mean under the same distribution. The three corners (bottom-left,

bottom-right, top) of each triangle (denoting the 2-simplex support

for L1-normalized transition probabilities of insert state) show

the points where PrðijiÞ; PrðmjiÞ, and PrðdjiÞÞ become exactly 1,

while remaining two parameters become 0.

As n increases, it can be seen from Figure 3(b) that PrðijiÞ also

increases (see mean and mode—yellow and black dots in the plots—

approach the bottom-left corner). This parameter influences the

observed length of an insert (and, by symmetry, delete) block

in an alignment. Again, these block lengths are geometrically distrib-

uted, with the probability of seeing a gap of length L defined by

ð1� PrðijiÞÞ � PrðijiÞL�1, and whose expected gap length is given

by 1=ð1� PrðijiÞÞ.
Figure 3(d) plots the expected gap length as a function of n with

the mode estimate assigned to the parameter PrðijiÞ. On average,

the expected gap length is about five amino acid residues for n in the

range [1, 120], and barring a few outliers at n ¼ [43, 44, 45, 91,
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94], the trend is flat. Examining the source structural alignment data

of these outliers (i.e. n-based alignment subsets on which the

Dirichlet priors have been inferred), we find protein domain pairs

with circularly permuted amino acid sequences and other pairs with

plastic deformations in their structures. We note that a circular per-

mutation between proteins results in a non-sequential relationship.

Enforcing a sequence alignment on such a relationship yields regions

that cannot be sequentially-aligned, which are then misinterpreted

as long gaps. Similarly, domain pairs with plastic deformations have

the same effect on gap lengths.

Further, in the range of n 2 ½120;350�, we see in Figure 3(d) that

the expected gap length increases linearly as a function of n. This

contradicts the observation by Benner et al. (1993) who have stated

that ‘the distribution of gap size is essentially independent of the

evolutionary distance between two sequences, with only a modest

decrease in average gap length at increasing PAM distance’.

Finally, in the range of n>350, the expected gap length in

Figure 3(d) shows a noisy-yet-flat trend line, averaging about 13 to

15 amino acid residues. This trend more likely reveals the limits of

applicability of PAM (Markov) matrix, and its convergence to its

stationary distribution for large n (Dayhoff et al., 1978). To test

this, we measure the Kullback–Leibler (KL) divergence of each

amino acid with varying PAM-n against its stationary distribution.

We note that the KL-divergence between any two discrete probabil-

ity distributions f and g over N mutually exclusive events, measures

the additional number of bits required to encode samples

drawn from f using g (i.e. it measures their relative Shannon en-

tropy): KLðf ; gÞ ¼
PN

x¼1 f ðxÞ log f ðxÞ
gðxÞ

� �
: By varying the value of

n 2 ½1;1000�, we computed the KL-divergence between each amino-

acid’s substitution probability distribution (i.e. each column of

PAM-n) and the stationary distribution (i.e. the eigenvector associ-

ated with the dominant eigenvalue of 1 of PAM matrices). Figure 4

plots the KL-divergence for each amino acid with varying PAM-n.

We observe that, for n>350, most columns of PAM-n (i.e. amino

acid substitution probabilities) converge to the stationary distribu-

tion. This indicates the limits of PAM’s ability to differentiate amino

acid substitutions at larger evolutionary distances.

3.2 Comparison with other programs on distantly

related pairs of protein sequences
We used two types of benchmark datasets to test the performance of

our sequence comparison framework. The first is a set of experimen-

tally verified remote orthologs reported by Szklarczyk et al. (2012),

Fig. 3. Visualization of the inferred Dirichlet distributions modeling the three free parameters of the finite-state machine, and their associated statistics. (a) One-

simplex distributions of PrðmjmÞ associated with the match, as a function of sequence-distance n 2 ½1; 1000�. (b) 2-simplex distributions of PrðijiÞ and PrðmjiÞ
associated with insert (and by symmetry, delete), as a function of sequence-distance n 2 f1; 40; 80; 120; 160; 200; 400; 600; 800g. Since the values of PrðijiÞ
(estimated from the mode) are in the range of [0.81, 0.93] for n 2 ½1; 1000�, its simplex support shown above has been truncated for clarity to the range of

[0.5, 1.0]. (c) The distribution of mean and mode values of PrðijmÞ þ PrðdjmÞ under the Dirichlet priors, as a function of n. (d) The distribution of expected gap

lengths derived from the mode-estimate of PrðijiÞ under the inferred Dirichlet priors
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containing a total of 877 protein sequence pairs spread over two

groups. The second is the entire twilight zone dataset from

SABmark (Van Walle et al., 2005) containing 10 250 protein se-

quence pairs, spread over 209 groups.

Specifically, the dataset of Szklarczyk et al. (2012) include, in the

first group, 405 pairs of human orthologous fungal mitochondrial

proteins found in Saccharomyces cerevisiae, and in the second

group, 472 pairs of orthologs found in Schizosaccharomyces pombe.

Their average percentage sequence identity is reported as 27.7%,

with about 40% of this dataset having pairs with <25% sequence

identity and 36% between 25% and 35% sequence identity.

We ran our MML based alignment program in two separate

modes. The first mode finds the best alignment hypothesis that mini-

mizes the message length term given in Equation 1. This yields the

IðA; hS;TiÞ statistic, together with the information measures of

alignment complexity IðAÞ and alignment fidelity IðhS;TijAÞ. The

second mode, which is the main focus of this work, is the one that

estimates the negative logarithm of the marginal probability as per

Equation 2 that yields ImarginalðhS;TiÞ statistic. Both IðA; hS;TiÞ and

ImarginalðhS;TiÞ are compared with their corresponding null model

message length, INULLðhS;TiÞ as per Equation 3, yielding the bits of

‘Compression’ statistic.

Further, we compare the results of this dataset against seven

widely-used protein sequence alignment programs: ClustalW

(Larkin, 2007), CONTRAlign (Do et al., 2006), KAlign (Lassmann

and Sonnhammer, 2005), MAFFT (Katoh and Standley, 2013),

MUSCLE (Edgar, 2004), ProbCons (Do et al., 2005) and T-

COFFEE (Notredame et al., 2000). We evaluate the performance

across all these program using the ‘Compression’ statistic. For each

alignment produced by the programs, we infer the best parameters

that minimize their IðA; hS;TiÞ measure. This allows us to compare

various message length terms against INULLðhS;TiÞ to find its

‘Compression’. We consider as hits (i.e. pairs that are correctly iden-

tified as related), only those alignments whose IðA; hS;TiÞ is shorter

than INULLðhS;TiÞ (refer statistical significance test in Section 2.2).

This allows us to compute the percentage of the total number of se-

quence pairs that pass the null hypothesis test for significance (%-

Hits). Table 1 presents these results across the two benchmark

groups of human remote orthologs (Szklarczyk et al., 2012). In the

table, we report the corresponding median values (across the whole

group) against IðAÞ; IðhS;TijAÞ, and ‘Compression’ entries.

Our MML based marginal probability method has the highest

percentage of hits (94.57% and 94.49% across the two groups,

respectively). This is followed by our MML based method to

identify the best alignment hypothesis (79.26% and 80.51%).

MUSCLE and KAlign (both with 73.83% hits in the first group;

76.06% and 74.79% hits respectively in the second) are the next

best performers.

We also compared the performance of all programs on the

SABmark twilight zone sequences covering 10 250 sequence pairs.

This is a substantially difficult dataset for most programs, especially

those that rely on reporting a single alignment. Table 1 gives the

results. As it can be seen, methods that rely on finding the best align-

ment under their respective criteria fare far worse than our MML

based method that estimates the marginal probability of relationship

between two sequences, and ascertains its statistical significance

with the null model. The MML based marginal probability is able to

identify significantly more number of hits (34.9%). A far second is

our MML based best alignment approach (4.1%), followed by

MUSCLE (2.5%).

Table 1. Comparison of various programs over two benchmark datasets: Human versus fungal ortholog groups reported by Szklarczyk

et al. (2012), and SABmark (Van Walle et al., 2005) twilight zone dataset

Human remote orthologs of fungal mitochondrial proteins SABmark proteins

Human versus S.cerevisiae (405 pairs) Human versus S.pombe (472 pairs) Twilight (10 250 pairs)

Program %-Hits IðAÞ IðS;TjAÞ Compression %-Hits IðAÞ IðS;TjAÞ Compression %-Hits

ClustalW 71.85 117.4 2678.1 82.6 74.58 110.3 2575.0 77.1 1.7951

CONTRAlign 71.11 117.8 2679.9 75.7 72.03 108.8 2573.6 70.7 2.3512

KAlign 73.83 134.3 2639.3 84.9 74.79 24.8 2533.1 81.8 2.4878

MAFFT 70.79 163.9 2622.1 81.8 71.91 150.9 2535.7 76.7 1.8187

MUSCLE 73.83 136.5 2639.3 86.1 76.06 129.8 2539.1 84.9 2.4976

ProbCons 70.12 143.5 2639.3 78.9 71.61 130.4 2543.9 75.9 1.6683

TCoffee 69.14 141.8 2640.9 76.5 71.19 130.8 2544.4 71.1 1.6390

MML (IðA�; hS;TiÞ) 79.26 119.1 2666.5 93.7 80.51 109.5 2548.85 94.2 4.1399

MML (ImarginalðhS;TiÞ) 94.57 N/A N/A 125.0 94.49 N/A N/A 117.9 34.9951

Note: The reported IðAÞ; IðhS;TijAÞ, and ‘Compression’ values are median statistics across the respective groups. These are information measures, reported in

bits. (Only ‘%-Hits’ statistic is shown for SABmark dataset. For full details of other statistics, see Supplementary Section S5.) N/A ¼ Not Applicable.

Fig. 4. Kullback–Leibler divergence between each amino acid related column

in the PAM-n matrix and its stationary distribution, measured in bits. The

black partitions define the [1, 120], [120, 350] and [350, 1000] regions corre-

sponding to the PAM-n ranges where we see different trends for the expected

gap length
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3.2.1 Marginal probability landscapes

As suggested in the introduction (Fig. 1), our work is able to produce

the entire landscape of competing alignments based on marginal

probability, for users to interactively study regions (and alignments)

of interest, rather than just relying on the single best. Figure 5 gives

a few more examples for randomly chosen pairs from our bench-

mark. This landscape can be queried to generate competing align-

ments, shown as paths in Figure 5. The Supplementary Section S5

provides a wider selection of landscapes comparing sequences across

varying distances.

3.2.2 Computational complexity and run times

The asymptotic time complexity to align any two sequences in our

MML framework grows as OðjSjjTjÞ. Any specific competing align-

ment can be probed and reported in OðjSj þ jTjÞ time after the ini-

tial OðjSjjTjÞ-effort to compute the marginal landscape. Using our

distributed alignment program, the average run time required to

compute IðA�; hS;TiÞ and ImarginalðhS;TiÞ for a sequence pair from

SABmark benchmark (on a standard Linux-based computer) is ap-

proximately 1.5 s and 1.7 s, respectively.
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S1 MML ESTIMATION OF MULTISTATE MODEL
PARAMETERS USING A DIRICHLET PRIOR

The Dirichlet probability density function, its negative log-
likelihood function, and its Fisher matrix determinant were
discussed in the main text. Below we discuss the mathematical
derivation of the MML estimator for multistate model parameters
using any specified Dirichlet prior.

A multistate model is defined on a data space containing
k discrete states. Its parameter vector is denoted as ~Θ =
{θ1, θ2, . . . , θk}, where each θi gives the probability of the i-
th state. Of these, only k − 1 parameters are free, while the
remaining parameter is dependent. Assume θk is dependent: θk =
1 −

∑k−1
i=1 θi. Thus, any ~Θ is a point inside a unit (k − 1)-

Simplex [Allison, 2018].
Let D be multistate data we observed, containing xi

occurrences of any i-th discrete state. The MML (Wallace-Freeman)
estimator [Wallace and Freeman, 1987, Wallace, 2005] of ~Θ over
these occurrences using the Dirichlet prior Dir(~α) requires the
minimization of the message length term:

I(~Θ|~α,D) = I(~Θ|~α)︸ ︷︷ ︸
First part

+ I(D|Θ)︸ ︷︷ ︸
Second part

. (1)

Using the MML method of Wallace and Freeman [1987], each of
the two parts can be expanded as:

I(~Θ|~α) = − log (f(~Θ|~α))+
k − 1

2
log (ck−1)+

1

2
log (det(Fisher(~Θ)))

and I(D|~Θ) = L(~Θ) + k−1
2
, where, L(~Θ) = −

∑k
i=1 xi log (θi)

is the negative log likelihood function of the multistate model,
det(Fisher(~Θ)) = (

∑k
i=1 xi)

k−1/
∏k
i=1 θi is the determinant of

its Fisher information matrix, f(~Θ|~α) is the Dirichlet probability
density function specified in the main text, and ck−1 is the Conway
and Sloane [1984] lattice constant in k − 1 dimensions.

As specified in the main text, the Dirichlet probability density
function is given by

f(~Θ|~α) =
1

B(~α)
Πk
i=1(θi)

αi−1

=⇒ log (f(~Θ|~α)) = − log(B(~α)) +

k∑
i=1

(αi − 1) log θi

=⇒ ∂

∂θi
log (f(~Θ)|~α) =

(αi − 1)

θi
− (αk − 1)

θk
,

where θk = 1−
∑k−1
i=1 θi.

Therefore, to find the optimal ~Θ that minimises the two-part
message length in Eqn. 1, we evaluate its extremum with respect
to each ~θi, as:

∂I(~Θ|~α,D)

∂~θi
= − (αi − 1)

θi
+

(αk − 1)

θk
−
xi + 1

2

θi
+
xk + 1

2

θk
= 0

=⇒ θi =
(αi + xi − 1

2
)× θk

αk + xk − 1
2

(2)

However, since
∑k
i=1 θi = 1, we have:

k∑
i=1

θi =

k∑
i=1

(αi + xi − 1
2
)× θk

αk + xk − 1
2

= 1

=⇒ θk =
αk − xk − 1

2∑k
j=1 αj +

∑k
j=1 xj −

k
2

(3)

Substituting Eqn. 3 into Eqn. 2 yields the MML estimate of the
probability of any i-th discrete state:

θi
MML =

(
xi + αi − 1

2∑k
j=1 xj +

∑k
j=1 αj −

k
2

)
. (4)

Thus, using Eqn. 4, the statement cost of the data D, with
{x1, . . . , xk} occurrences of its k discrete states is given by:

I(D|Θ) =

k∑
i=1

xi × (− log(θMMLi )) (5)

S2 INFERRING DIRICHLET PRIORS OVER
ALIGNMENT DATA

Let An be a set of alignment three-state strings (over match,
insert, and delete states). The set of alignments An is curated
such that each alignment is between amino acid sequences that are
at the same estimated distance n (see section S3 and main text).
Using An, the goal is to infer the Dirichlet prior parameters ~α that
capture the observed distribution of the state machine parameters ~Θ
as a function of the sequence-distance parameter n.

As discussed in the main text, after constraining the three-state
machine to have symmetric transition probabilities over insert

1
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and delete states, this inference problem reduces to finding the
optimal Dirichlet distributions over a 1-simplex (to infer Pr(m|m))
and a 2-simplex (to infer Pr(i|i) and Pr(m|i)).

For any k−1 simplex model, the ~α that minimises the total
message length: I(~α,~Θ,An) yields the Dirichlet prior on the state
parameters as a function of distance n. Note, ~α contains k free
parameters to be inferred. The MML two-part message length based
objective function is:

I(~α,~Θ,An) = I(~α) + I(~Θ|~α)︸ ︷︷ ︸
first part

+ I(An|~Θ,~α)︸ ︷︷ ︸
second part

bits (6)

The first part term I(~α) denotes the statement cost of the Dirichlet
parameters ~α. Using Wallace and Freeman [1987] method of
estimation, this term expands to:

I(~α) = − log (h(~α)) +
k

2
log (ck) +

1

2
log (det(Fisher(~α)))

where h(~α) is the prior on the Dirichlet parameters ~α, and ck is
the Conway and Sloane [1984] lattice constant associated with k
degrees of freedom (c2= 5

36
√
3

and c3= 19

192×2
1
3

).

The Dirichlet parameters ~α can be reparameterised into (κ,µ̂)
denoting (concentration, mean) of the distribution, respectively
– see main text. Thus, the prior on these parameters can be
decomposed as:

h(~α) = h(κ) h(µ̂),

where h(κ) is the prior for the concentration parameter and h(µ̂) is
the prior for the L1-normalised mean vector.

In this work, we assume that µ̂ is uniform over the entire support.
Thus, h(µ̂) is simply the reciprocal of the volume of the (k−1)
simplex. Specifically, for k=2 and k=3, the uniform prior yields
1√
2

and 2√
3

, respectively.
On the other hand, κ controls the concentration of the Dirichlet

probability density function (about the distribution’s mode). For any
y diffusing with d degrees of freedom, Wallace [2005] defined a
well-behaved prior for y of the form:

g(y) =
yd−1

(1 + y2)
d+1
2

When d = 2, the normalization constant of g(y) is computed
as
∫∞
0
g(y) =

∫∞
0

y

(1+y2)
3
2

= 1. Thus, h(κ) = g(κ) gives

the prior probability distribution of κ for a 1-simplex Dirichlet.
Similarly, when d = 3, computing the normalization constant gives∫∞
0
g(y) =

∫∞
0

y2

(1+y2)2
= π

4
, which yields h(κ) = 4

π
g(κ).

For I(~Θ|~α) term in the first part of Eqn. 6, we used the following
alternative expansion (compared with the one specified in section
S1) suggested by Wallace [2005]:

I(~Θ|~α) =

|An|∑
n=1

1

2
log

(
1 +

det[Fisher(~Θ)] ck−1
k−1

f (~Θ |~α)
2

)+
k

2

This alternative formulation is especially useful to avoid
underestimation of I(~Θ|~α) when ~Θ parameters are stated to high-
precision [Wallace, 2005].

Finally, the second part of Eqn. 6 corresponds to transmitting all
the alignment three-state strings in An using the parameters ~Θ and
~α stated in the first part. This requires:

I(An|~Θ,~α) =

|An|∑
n=1

(
I(An |~Θ) +

k − 1

2

)
(7)

where, I(An |~Θ) is computed as per Eqn. 5.

S3 DISCUSSION ON DIRICHLET INFERENCE

Choice of the data source
The main goal of this exercise is to identify a data set containing
protein sequence-pairs, where each pair has a detectable amino acid
sequence relationship between them, and as a collection, there is
sufficient representation of these sequence-pairs at varying sequence
distances, so that the Dirichlet models can be inferred as a function
of these distances.

In this work, we randomly sampled a set of 118,384 protein
domain-pairs from the Structural Classification of Proteins (SCOP
v2.07) database [Murzin et al., 1995] and used this data set as the
source collection for Dirichlet prior inference. Each domain in the
collection is unique, in the sense that no protein domain repeated in
the collection of domain-pairs.

The hierarchical organization of SCOP provides the convenience
of identifying protein domains that have descended from a common
ancestor with varying evolutionary distances. Each domain has a 4-
level classification specifying the Class, Fold, Superfamily
and Family that it belongs to. Since we are interested in
domain-pairs with related amino acid sequences, we restrict our
random selection of domain-pairs to the bottom two SCOP levels:
‘superfamily’ and ‘family’. The domains within the same
family are often closely related in their sequence, while those
from the same superfamily but different families contain
sequences which have diverged but with a detectable sequence
signal.1

Using the random sampling method described below, we
identified a source collection of protein domain-pairs, where 47,687
pairs are related at the family level and 70,697 pairs are related at
the superfamily level. The full list of SCOP domain-pairs can
be downloaded from: [here].

Random sampling method
Any domain-pair is randomly selected from SCOP using the
procedure decribed below. The procedure uses the SCOP
organization of domains within its hierarchical-classification tree.
The internal nodes of this tree are associated with the 4-level
classification of protein domains (specified above). Each domain
in SCOP is organised as per its 4-level classification as a separate
leaf-level node. Any traversal from the root to the leaf yields a
domain.

1 We note that other protein classification databases such as CATH or
ECOD could have served us equally well for this exercise, but our choice
of SCOP [Murzin et al., 1995] is mainly because it is built on a manually-
curated database of protein domains, and is widely-used by protein scientists
among the alternatives.
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The sampling procedure involves traversing from the root to the
leaf level by selecting, at each successive step of the traversal, a
random child-node (a node from the next level). The choice of the
child-node is a weighted random selection based on the number
of leaves (i.e. domains) in the respective subtrees of the candidate
child-nodes of any given node.

Thus, to identify domain-pairs within the same superfamily
but from different families, the traversal proceeds from the root till
the level of superfamily is reached. Then the weighted random
sampling method selects two random domains (leaf-nodes) from
different families (child-nodes), while considering only the SCOP
superfamilies with ≥ 2 families. Similarly, to identify domain-pairs
from the same family, when the traversal reaches the family
level nodes, a pair of its children (leaf-nodes) are randomly selected,
while only considering families with ≥ 2 domains.

Practical considerations
The quality of Dirichlet prior inference depends on: (1) the
collection of protein sequence-pairs at varying evolutionary
distances, and (2) the quality of their specified sequence
relationships/alignments. Here, we discuss how these criteria are
achieved in our work.

Since all domain-pairs chosen from SCOP have their associated
three-dimensional (3D) atomic coordinate information, the pairs can
be structurally aligned to decipher more reliable amino acid residue-
residue correspondences from which their amino acid sequence
alignments can be derived. The reliability of these correspondences
are more trustworthy because functional constraints on evolving
protein domains ensure that their 3D structures are far more
conserved than their amino acid sequences [Lesk, 2010].

Thus, each sampled SCOP domain pair was structurally aligned
using the MMLigner structural alignment program [Collier et al.,
2017]. This generated a source collection of 118,384 structural
alignments, from which their corresponding alignment three-state
strings were generated and used in our Dirichlet inference exercise.
From this point onwards, all obtained structural alignments are
processed in terms of their amino acid sequence data.

Using PAM distance as a proxy for evolutionary distance between
two sequences, for each alignment in our domain-pair collection,
we infer the optimal PAM distance n that maximises the probability
of the matched amino acids specified by the alignment (see main
text). This allows us to group the alignments in the collection based
on their integral n values, in the range of [1, 1000]. These n-based
alignment groups are then used to infer a Dirichlet model over the
unit 1-simplex, and separately a Dirichlet model over the unit 2-
simplex, for n ∈ [1, 1000].

The inferred n-based Dirichlet parameters can be downloaded
from: [here]. The distribution of the number of alignments as a
function of n can be downloaded from [here].

We emphasise that the modelling exercise discussed above
entails a one-time preprocessing task. This task is independent
of any specific protein sequences whose alignment is sought in
our proposed MML-based alignment framework. In information-
theoretic parlance, these parameters are a part of the ‘codebook’ of
communication between an imaginary transmitter-receiver pair; a
codebook should only contain common-knowledge or preconceived
notions about the data being transmitted, and not the actual data

itself. Consistent to this, in our alignment methodology, these
inferred parameters are merely used and never recomputed.

Discussion on the computation of Dirichlet estimates We
implemented and tested two methods to infer the Dirichlet
parameters ~α given any alignment data set. The first strategy is a
gradient descent based approach, while the other is an exhaustive
parameter sweep approach with fixed parameter-precision.

Gradient descent based approach converges rapidly, but its
accuracy compared to the true parameter values is limited. On
a standard Linux-based computer, it takes about 4 seconds to
infer the Dirichlet parameters for an n-based group containing
100 alignments of domain-pairs. The exhaustive method does a
parameter sweep with fixed precision, and hence is significantly
more accurate than gradient descent. When the precision of ~α is
set 0.01 (two places after the decimal), the exhaustive method takes
24 seconds to find the optimal parameters (to the stated precision).
Given this is a one-time exercise, we favoured the exhaustive
approach for its accuracy.

S4 OVERVIEW TO THE RELATED LITERATURE

The common criteria for generating a sequence alignment
encompasses a scoring scheme to quantify the relationship between
protein sequences. Broadly, the matched regions are scored using an
amino acid substitution matrix, while the unmatched (gap) regions
are penalised. That is, a fixed scoring matrix and an associated
gap penalty function form the inputs for any sequence alignment.
In practice, besides the default settings, the choice of the scoring
matrix and gap penalty function parameters are left for the users to
fine-tune, and thus it remains a “trial and error based exercise” [Do
et al., 2005, Vingron and Waterman, 1994]. Moreover, the manual
fine-tuning is arduous due to the “non-convexity of ad hoc scoring
functions” [Do et al., 2006].

Often, the users either tweak the default parameter setting of a
program, or apply a commonly-used parameter settings prescribed
by others. For instance, PAM250 and BLOSUM62 are commonly
and widely used scoring matrices. As for the gap parameters,
the default settings of many alignment programs include penalty
combinations that adhere to the conventional choice of imposing
a larger penalty for opening a gap and a smaller penalty for
extending the same [Altschul et al., 1990]. However, different
parameter settings yield radically different alignments [Vingron and
Waterman, 1994]. Therefore several previous studies have sought to
explore the parameter space in the quest for the optimal sequence
alignment [Vingron and Waterman, 1994, Barton and Sternberg,
1987, Fitch and Smith, 1983, Blake and Cohen, 2001].

Specifically, Vingron and Waterman [1994] examined the
tessellation of the parameter space with respect to gap penalties
and a matrix bias over the PAM-250 scoring matrix. A flat
surface in the tessellation encloses a set of different parameter
settings that resulted in the same optimal alignment. While such an
exhaustive search can provide an understanding of the alignment
with respect to the parameter space, it is unarguably a tedious
and inefficient exercise. ProbCons [Do et al., 2005] performed a
Baum-Welch based Expectation-Maximization (EM) on benchmark
datasets to train a pairwise Hidden Markov Model (pair-HMM).
However, the use of a fixed scoring matrix is still an impediment
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to this process, and prone to over-fitting [Do et al., 2006]. A
noteworthy solution was proposed in CONTRAlign[Do et al., 2006],
where a pairwise alignment framework for parameter learning used
conditional random fields. This estimates an optimal substitution
matrix along with gap penalties, and demonstrate its effectiveness
on a small data set of alignments.

However, a critically overlooked aspect in defining the parameter
space is the relationship between evolutionary distance and
insertion-deletion (indel) events. The evolutionary distance is often
measured in terms of the sequence identity percentage between the
sequences of interest. Alternatively, a Markov model of evolution
such as the one used by PAM [Dayhoff et al., 1978] provides another
proxy for evolutionary distance between two sequences. When two
sequences become more diverged, structural stability constraints
bear a greater precedence, involving more insertions and deletions
to account for [Blake and Cohen, 2001]. This has been empirically
observed where diverged sequence relationships can be modelled
using smaller penalties for indel events [Blake and Cohen, 2001].

In typical use, the substitution parameters are independent of
indel parameters [Redelings and Suchard, 2005], and only a
few noticeable efforts have been made to make them work in
concert. For instance, Blake and Cohen [2001] tested an alignment
improvement by constructing a set of structural-superposition based
amino acid substitution matrices for different evolutionary distance
contexts and by obtaining the optimal gap penalties exhaustively
for each, with the specific goal of improving remote pairwise
homolog detection. Another study by Vogt et al. [1995] attempted
to optimise gap penalties for a set of scoring matrices including
a series of PAM, BLOSUM and Gonnet matrices. Several others
[Gonnet et al., 1992, Chang and Benner, 2004, Benner et al.,
1993] also explored the relationship between PAM-n and the length
of gaps. Some of this work challenged the common notion of
geometric distribution based gap length modelling, by empirically
estimating a generalised Zipfian distribution, where the probability
of a gap length is inversely-proportional to the gap length. Gonnet
et al. [1992] and Benner et al. [1993] noted that the probability
of observing a gap grows linearly with PAM-n. Moreover, they
presented a relationship between PAM-n and the probability of
a gap of certain length, claiming the Zipfian parameters to be
independent of the evolutionary distance. Chang and Benner [2004]
further observed that the Zipfian approximation does not change
across a few bins spanned over PAM-10 and PAM-100, and also
over the f2 measure (i.e., “the fraction of conserved nucleotides at
the third position where the residue is conserved”), accounting for
varying levels of selective pressure. To the contrary, experiments by
Pascarella and Argos [1992] show an “exponential behaviour” for
the expected “intervening sequence length”.

S5 OTHER SUPPORTING INFORMATION
1. Detailed statistics comparing 8 programs (MML, ClustalW,

CONTRAlign, KAlign, MAFFT, MUSCLE, ProbCons, T-
Coffee) on:

• Human fungal mitrochondrial proteins (remote ortholog)
data set: [click here]

• SABMark “Twilight” zone (twi) data set: [click here]
2. A selection of marginal probability landscapes: [click]

3. Download software and C++ code (GNU General Public
License): [click here]
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