
1 Derivation of EAD recurrences given in the main text Section
3.2

Beyond the notations introduced in section 3.2 of the main text, the derivation below uses the following
additional ones:

A the set of all possible alignments between 〈S, T 〉.

A(i,j) the set of all possible alignments of their prefixes 〈S1...i, T1...j〉 of the sequences.

Am
(i,j) the subset of all alignments of prefixes that end in a match(m) state at cell (i, j).

Ai
(i,j) the subset of all alignments of prefixes that end in a insert(i) state at cell (i, j).

Ad
(i,j) the subset of all alignments of prefixes that end in a delete(d) state at cell (i, j).

Am
(i,j) any alignment of prefixes that ends in a match(m) state at (i, j).

Ai
(i,j) any alignment of prefixes that ends in a insert(i) state at (i, j).

Ad
(i,j) any alignment of prefixes that ends in a delete(d) state at (i, j).

Am|m
(i,j) any alignment of prefixes that ends in a match(m) state at (i, j) given a match(m) state at (i−1, j−1).

(Similar notation for all 9 possible transitions going between any two states of {match, insert, delete}.)

Pr(m|m) the transition probability of going into a match given a previous match state.
(Similar notation for all 9 possible transitions going between any two states of {match, insert, delete}.)

Pr(〈si, tj〉) the joint probability of matching a pair of amino acids, si ∈ S and tj ∈ T .

Derivation

Starting with recurrence (6) in the main text, by the definition of EADm(i, j), we have:

EADm(i, j) =
∑

∀Am
(i,j)
∈Am

(i,j)

Pr(Am
(i,j), 〈S1...i, T1...j〉)× distance(Am

(i,j),Aref), (1)

But all alignments Am
(i,j) that end in a match (m) state at (i, j) are derived by extending all alignments

arriving at the cell (i − 1, j − 1) in any of the three alignment states ({match, insert, delete}), that is
the set of alignments A(i−1,j−1) = Am

(i−1,j−1) ∪Ai
(i−1,j−1) ∪Ad

(i−1,j−1), by a pair of matched amino acids

corresponding to the cell (i, j), that is, 〈si, tj〉.
Therefore, Equation 1, can be decomposed based on the above observation as:

EADm(i, j) =
∑

∀Am|m
(i,j)
∈Am

(i,j)

Pr(Am|m
(i,j), 〈S1...i, T1...j〉)× distance(Am|m

(i,j),Aref)

+
∑

∀Am|i
(i,j)
∈Am

(i,j)

Pr(Am|i
(i,j), 〈S1...i, T1...j〉)× distance(Am|i

(i,j),Aref)

+
∑

∀Am|d
(i,j)
∈Am

(i,j)

Pr(Am|d
(i,j), 〈S1...i, T1...j〉)× distance(Am|d

(i,j),Aref) (2)

where the component joint probability terms in the r.h.s of Equation 2 are equivalent to:

Pr(Am|m
(i,j), 〈S1...i, T1...j〉) = Pr(Am

(i−1,j−1), 〈S1...i−1, T1...j−1〉)× Pr(m|m)× Pr(〈si, tj〉)

Pr(Am|i
(i,j), 〈S1...i, T1...j〉) = Pr(Ai

(i−1,j−1), 〈S1...i−1, T1...j−1〉)× Pr(m|i)× Pr(〈si, tj〉)

Pr(Am|d
(i,j), 〈S1...i, T1...j〉) = Pr(Ad

(i−1,j−1), 〈S1...i−1, T1...j−1〉)× Pr(m|d)× Pr(〈si, tj〉)

Further, the component distance terms in the r.h.s of Equation 2 can be expanded as:

distance(Am|m
(i,j),Aref) = distance(Am

(i−1,j−1),Aref) + δ(i+ j − 1) + δ(i+ j)

distance(Am|i
(i,j),Aref) = distance(Ai

(i−1,j−1),Aref) + δ(i+ j − 1) + δ(i+ j)

distance(Am|d
(i,j),Aref) = distance(Ad

(i−1,j−1),Aref) + δ(i+ j − 1) + δ(i+ j)

This holds because any alignment ending in a match state at (i, j) must arrive from (i − 1, j − 1), and in
doing so, will cross two skew-diagonals (see Figure 1. Also cf. Figure 1 in the main text)

1. one skew-diagonal indexed by i+ j − 1 and

2. the other skew-diagonal indexed by i+ j.
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Figure 1: All alignments ending in a match state at (i, j) cross two skew-diagonals, along which their
additional distances has to be accounted for during dynamic programming

Thus, for all alignments going from (i − 1, j − 1) to (i, j), the component distance terms at (i − 1, j − 1)
get augmented by a δ(i+ j − 1) + δ(i+ j), accounting for their widths/slacks with respect to the reference
alignment Aref along the above two skew-diagonals.

Substituting the expanding the component joint probability and distance terms shown above into Equa-
tion 2, after rearranging yields:

EADm(i, j) =
∑

∀Am
(i−1,j−1)

∈Am
(i−1,j−1)

Pr(Am
(i−1,j−1), 〈S1...i−1, T1...j−1〉)× distance(Am

(i−1,j−1),Aref)

︸ ︷︷ ︸
EADm(i−1,j−1)

×Pr(m|m)× Pr(〈si, tj〉)

+
∑

∀Am
(i−1,j−1)

∈Am
(i−1,j−1)

Pr(Am
(i−1,j−1), 〈S1...i−1, T1...j−1〉)× Pr(m|m)× Pr(〈si, tj〉)× [δ(i+ j − 1) + δ(i+ j)]

+
∑

∀Ai
(i−1,j−1)

∈Ai
(i−1,j−1)

Pr(Ai
(i−1,j−1), 〈S1...i−1, T1...j−1〉)× distance(Ai

(i−1,j−1),Aref)

︸ ︷︷ ︸
EADi(i−1,j−1)

×Pr(m|i)× Pr(〈si, tj〉)

+
∑

∀Ai
(i−1,j−1)

∈Ai
(i−1,j−1)

Pr(Ai
(i−1,j−1), 〈S1...i−1, T1...j−1〉)× Pr(m|i)× Pr(〈si, tj〉)× [δ(i+ j − 1) + δ(i+ j)]

+
∑

∀Ad
(i−1,j−1)

∈Ad
(i−1,j−1)

Pr(Ad
(i−1,j−1), 〈S1...i−1, T1...j−1〉)× distance(Ad

(i−1,j−1),Aref)

︸ ︷︷ ︸
EADd(i−1,j−1)

×Pr(m|d)× Pr(〈si, tj〉)

+
∑

∀Ad
(i−1,j−1)

∈Ad
(i−1,j−1)

Pr(Ad
(i−1,j−1), 〈S1...i−1, T1...j−1〉)× Pr(m|d)× Pr(〈si, tj〉)× [δ(i+ j − 1) + δ(i+ j)]

(3)

By grouping all even terms on the r.h.s. of Equation 3 together, we get the recurrence:

EADm(i, j) = EADm(i− 1, j − 1)× Pr(m|m)× Pr(〈si, tj〉)
+ EADi(i− 1, j − 1)× Pr(m|i)× Pr(〈si, tj〉)
+ EADd(i− 1, j − 1)× Pr(m|d)× Pr(〈si, tj〉)

+

 ∑
∀Am

(i−1,j−1)
∈Am

(i−1,j−1)

Pr(Am
(i−1,j−1), 〈S1...i−1, T1...j−1〉)× Pr(m|m)× Pr(〈si, tj〉)

+
∑

∀Ai
(i−1,j−1)

∈Ai
(i−1,j−1)

Pr(Ai
(i−1,j−1), 〈S1...i−1, T1...j−1〉)× Pr(m|i)× Pr(〈si, tj〉)

+
∑

∀Ad
(i−1,j−1)

∈Ad
(i−1,j−1)

Pr(Ad
(i−1,j−1), 〈S1...i−1, T1...j−1〉)× Pr(m|d)× Pr(〈si, tj〉)


× [δ(i+ j − 1) + δ(i+ j)]

(4)

But the last term on the r.h.s. is the marginal probability over all alignments ending in a match at (i, j),
resulting in the final form of recurrence (6) used in the main text:

EADm(i, j) = EADm(i− 1, j − 1)× Pr(m|m)× Pr(〈si, tj〉)
+ EADi(i− 1, j − 1)× Pr(m|i)× Pr(〈si, tj〉)
+ EADd(i− 1, j − 1)× Pr(m|d)× Pr(〈si, tj〉)
+ Pr

marginal
(〈S1...i, T1...j〉 |match@(i, j))× [δ(i+ j − 1) + δ(i+ j))

(5)
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Recurrences (7) and (8) in the main text follow identical lines of derivations, with the only difference that
they account for all alignments coming into (i, j) in a insert(i) and delete(d) states, respectively. Also,
all such alignment transitions only cross a single skew-diagonal, indexed by i+ j, therefore those recurrences
will contain only the δ(i+ j) term.
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